Here's what you need to know...

  1. Drop sets increase tension on a muscle and metabolic stress. Fatigue a muscle with one heavy set, then immediately do several more reps with lighter weight.
  2. Emphasize the eccentric (lowering) phase of a lift to increase time under tension. Do heavy negatives at the end of a final set of an exercise.
  3. If you're isolating a muscle, stretch the opposing muscle for increased power output.
  4. Be intentional about backing off for a period of time. Deload according to your needs.
  5. If your goal is to hit a PR, develop an external focus. If your goal is to build muscle, focus internally for a greater mind-muscle connection.

Beginner Gains

When you first start training, progress comes quickly. Almost any routine leads to more strength and hypertrophy.

But over time improvements diminish. Despite this, many lifters continue to train the same way for years without progress.

Continual muscle and strength gains require you to adopt a scientific approach to training. Follow these strategies and get on the fast track to a better body.

1 – Do Drop Sets

Mechanical tension (i.e. the force exerted on a muscle) provides the primary stimulus for muscle growth. It's the reason lifting weights increases muscle size while aerobic exercise doesn't.

There simply isn't enough tension on the muscles during cardio to stimulate a hypertrophic adaptation. But there's compelling evidence that factors other than tension are also involved in the growth process. Metabolic stress is one of them.

Metabolic stress involves the buildup of metabolites (such as lactate, hydrogen ions, and phosphate ions) and a reduction in pH levels as a result of intensive anaerobic exercise.

Although the exact mechanisms aren't clear, researchers believe increased fiber recruitment, acute elevations in anabolic hormones, alterations in myokines, and cell swelling all play a role in this process.

Theoretically, routines that generate high levels of mechanical tension in combination with significant metabolic stress are best for maximizing growth.

Metabolic stress is heightened during training that relies on fast glycolysis (the anaerobic breakdown of carbohydrate) as the primary source of energy. The fast glycolytic energy system is predominant in activities that last approximately 30-120 seconds – between half a minute and a minute and a half.

With resistance training, this would be sets performed with moderate to higher reps. There's also a prolonged compression of blood vessels during such training, which further reduces oxygen delivery to working muscles and heightens metabolic stress.

So how can you take advantage of this info? One proven strategy is to use drop sets in your training.

What to do: Perform a heavy set of reps to fatigue (generally in the 3-10 rep range) and then immediately decrease the weight and do several more reps. This will substantially increase metabolic stress and increase anabolism.

How to do it: When you train, take a set to momentary muscular failure, immediately lighten the load by approximately 20 to 25%, and perform as many additional reps as possible with this reduced weight.

For an even greater metabolic effect, perform double drop sets by reducing the load another 20 to 25% and then repping out to fatigue.

A word of caution: While drop sets are a highly effective technique, they can also be extremely taxing to your neuromuscular system. Use them sparingly in the context of a periodized routine.

Don't make every damn exercise a drop set. Try to limit their use to a select few sets in a given microcycle, making sure to stay in tune with your body for any signs of overtraining.

2 – Maximize Negatives

Don't just focus on the concentric portion of a lift while ignoring the negative (eccentric) component. Resistance training is not just about lifting weights; lowering them can be equally, if not more, important.

Research shows that negatives have a greater affect on muscle hypertrophy than concentric training, and there's evidence that maximal growth isn't attained unless eccentric muscle actions are performed.

This may be related to eccentrics being primarily responsible for muscle damage. Although muscle damage can be detrimental to short-term performance, the associated inflammation and increased protein turnover have been shown to cause long-term hypertrophic adaptations.

Many believe that structural changes associated with muscle damage influence gene expression, resulting in a strengthening of the muscle that protects it against further injury.

Eccentric training also heightens metabolic stress, with the greatest increases noted when training at higher eccentric intensities. These factors help to explain why negatives promote greater post-exercise anabolic signaling than concentric training, leading to heightened protein synthesis.

What to do: Include some heavy negatives in your routine, preferably at the end of your last set of a given exercise.

How to do it: Load up the bar with an amount equal to approximately 105 to 125% of your concentric maximum and perform as many negative reps as you can.

Given that a muscle isn't fully fatigued during concentric training, this supramaximal stimulus helps to elicit greater motor unit fatigue, thus providing a greater hypertrophic stimulus.

Aim for a 2-3 second tempo, making sure to lower the weight under control. A couple of heavy negative sets added to your usual routine are all that's required to spur growth.

You'll need a spotter to help lift the weight once you lower it since it's a supramaximal lift. As with drop sets, however, this strategy is highly taxing to the neuromuscular system so use the technique sparingly.

3 – Stretch the Opposing Muscle

Research shows that too much static stretching can decrease strength and power when performed immediately before training.

Think of shooting a rubber band. If you stretch out the band, it won't travel as far as it would if it were taut. Same thing happens in the muscle – reduce its stiffness and force production declines.

Another theorized mechanism involves decreased neural drive and a subsequent reduction in the number of motor units available for contraction.

But what if we turn things around and focus on stretching the opposing muscle (i.e. the antagonist) rather than the agonist? That means you'd stretch your quads before training your hamstrings. Or stretch your triceps before training your biceps.

By increasing antagonist compliance and reducing neural drive, its force production would be inhibited, thereby decreasing interference during agonist contraction. Hypothetically, this allows the agonist to produce greater force, thereby enhancing performance.

Research shows this actually works in practice. Research shows that measures of vertical jump height and power are significantly greater when testing is preceded by antagonist stretching, compared to a no-stretching trial in a well-designed study of trained lifters.

What to do: Before performing a lift, statically stretch the antagonist muscle for approximately 15 seconds. Perform 3-4 sets of the targeted stretch, taking about 10 seconds between stretching bouts, and then continue immediately to your work set.

Try to minimize time between the final set of stretching and the initiation of your lift. This will ensure that the antagonist remains maximally inhibited throughout the lift, thereby optimizing gains.

4 – Deload as Needed

Check out any gym and you'll invariably see lifters taking a balls-to-the-wall approach to lifting. They'll go to failure on every set, usually with a few forced reps. Volume and intensity remains perpetually high.

Problem is, this type of training can limit results.

Yes, training hard and heavy is essential to grow bigger and stronger. It's the basis of the overload principle, which states that you need to challenge your muscles beyond their present capacity for them to adapt.

But if you think repeatedly going all-out all the time with consistently high volume loads is the key to getting jacked, think again.

Studies show that such an approach can impair resting IGF-1 and testosterone production while chronically elevating cortisol levels, leading to overtraining and psychological burnout.

Results slow or regress to the point that you actually lose precious muscle and strength.

Crank the RPMs in your car up into the red zone for too long and you'll eventually blow the motor, right? Well, your body is no different. It needs time to regenerate resources. You come back strong and refreshed, and progress continues on an upward trend.

What to do: Structure your routine so that it includes regular "unloading" periods of reduced intensity and volume interspersed throughout a given training period.

Try to keep things regimented. A strategy that works well is to gradually increase intensity and/or volume over the course of a training block (generally a month or so) and then follow with an unloading week.

This is referred to as step-loading, where your effort increases and decreases to produce a wave-like training pattern. Similarly, periodize training to failure so that it's done occasionally rather than on every set.

Key point: Keep in mind that recuperative abilities are individualized. Genetics, nutritional supplementation, the use of anabolics, and other factors play a role in the process. So make sure you're in tune with your body and adjust the frequency of unloading cycles based on individual response.

5 – Refocus For Your Goal

Your focus impacts your motor learning.

There are two kinds of attentional focus: internal and external. An internal focus involves placing your attention on a specific body movement, while an external focus involves concentrating on the effects your actions have on your surroundings.

There's research showing that an external focus tends to promote superior results when learning a new skill compared to an internal focus.

This is consistent with the belief that an internal focus causes interference with the automatic control processes that regulate the performance (i.e. overthinking the technique of an exercise). Whereas an external focus of attention allows the neuromuscular system to naturally self-organize movement.

The thinking goes that your neuromuscular system will inherently find the best motor pattern to carry out a task provided that you focus on the desired outcome. The result is improved force production and skill accuracy.

This doesn't mean you should never use an internal focus.

Studies show that the use of a mind-muscle connection where you consciously channel your focus on the target muscle increases EMG activity of that muscle. This indicates that you can improve motor unit recruitment, and thus enhance muscle development, by employing an internal focus of attention.

Bottom line is that both an external and internal focus can have a place in your routine, and their use should be based on your training goal.

What to do: Adopt an external focus when your goal is maximal strength or power. Envision the endpoint of the lift and concentrate on driving the weight up as explosively as possible to reach that endpoint.

Provided you understand proper exercise form, your neuromuscular system will do the rest.

But if you're looking to increase hypertrophy, focus directly on the target muscle and feel it work throughout the duration of the movement. In this way, you'll maximize recruitment of the target musculature while minimizing ancillary muscle involvement.

While some lucky SOB's can pack on muscle with relative ease, most mere mortals have to get a little crafty to keep piling on the plates and the pounds.

Give these five tips serious consideration and kiss your muscle-building plateau goodbye.

Related:  The Rep Bible

Related:  The Truth about Soreness

Related:  Feeling the Muscle vs. Moving the Weight


  1. Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 2010 Oct;24(10):2857-72.
  2. Goto K, Sato K, Takamatsu K. A single set of low intensity resistance exercise immediately following high intensity resistance exercise stimulates growth hormone secretion in men. J Sports Med Phys Fitness. 2003 Jun;43(2):243-9.
  3. Hather BM, Tesch PA, Buchanan P, Dudley GA. Influence of eccentric actions on skeletal muscle adaptations to resistance training. Acta Physiol Scand. 1991 10;143(2):177-85.
  4. Roig M, O'Brien K, Kirk G, Murray R, McKinnon P, Shadgan B, et al. The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: A systematic review with meta-analysis. Br J Sports Med. 2009 08;43(8):556-68.
  5. Evans WJ, Cannon JG. The metabolic effects of exercise-induced muscle damage. Exerc Sport Sci Rev. 1991;19:99-9125.
  6. Wernig A, Irintchev A, Weisshaupt P. Muscle injury, cross-sectional area and fibre type distribution in mouse soleus after intermittent wheel-running. J Physiol. 1990 Sep;428:639-52.
  7. Barash IA, Mathew L, Ryan AF, Chen J, Lieber RL. Rapid muscle-specific gene expression changes after a single bout of eccentric contractions in the mouse. Am J Physiol Cell Physiol. 2004 Feb;286(2):C355-64.
  8. Moore DR, Phillips SM, Babraj JA, Smith K, Rennie MJ. Myofibrillar and collagen protein synthesis in human skeletal muscle in young men after maximal shortening and lengthening contractions. Am J Physiol Endocrinol Metab. 2005 06;288(6):1153-9.
  9. Nelson AG, Allen JD, Cornwell A, Kokkonen J. Inhibition of maximal voluntary isometric torque production by acute stretching is joint-angle specific. Res Q Exerc Sport. 2001 Mar;72(1):68-70.
  10. Behm DG, Button DC, Butt JC. Factors affecting force loss with prolonged stretching. Can J Appl Physiol. 2001 Jun;26(3):261-72.
  11. Kokkonen J, Nelson AG, Cornwell A. Acute muscle stretching inhibits maximal strength performance. Res Q Exerc Sport. 1998 Dec;69(4):411-5.
  12. Sandberg JB, Wagner DR, Willardson JM, Smith GA. Acute effects of antagonist stretching on jump height, torque, and electromyography of agonist musculature. J Strength Cond Res. 2012 May;26(5):1249-56.
  13. Fry AC, Kraemer WJ. Resistance exercise overtraining and overreaching. neuroendocrine responses. Sports Med. 1997 Feb;23(2):106-29.
  14. Izquierdo M, Ibanez J, Gonzalez-Badillo JJ, Hakkinen K, Ratamess NA, Kraemer WJ, et al. Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains. J Appl Physiol. 2006 May;100(5):1647-56.
  15. Wulf G, Hoss M, Prinz W. Instructions for motor learning: Differential effects of internal versus external focus of attention. J Mot Behav. 1998 Jun 1;30(2):169-79.
  16. Wulf G, Lauterbach B, Toole T. The learning advantages of an external focus of attention in golf. Res Q Exerc Sport. 1999 Jun;70(2):120-6.
  17. Snyder BJ, Leech JR. Voluntary increase in latissimus dorsi muscle activity during the lat pull-down following expert instruction. J Strength Cond Res. 2009 Nov;23(8):2204-9.
  18. Lewis CL, Sahrmann SA. Muscle activation and movement patterns during prone hip extension exercise in women. J Athl Train. 2009 May-Jun;44(3):238-48.